MRI and CT compatible asymmetric bilayer hydrogel electrodes for EEG-based brain activity monitoring

MRI 和 CT 兼容非对称双层水凝胶电极,用于基于 EEG 的脑活动监测

阅读:10
作者:Guoqiang Ren, Mingxuan Zhang, Liping Zhuang, Lianhui Li, Shunying Zhao, Jinxiu Guo, Yinchao Zhao, Zhaoxiang Peng, Jiangfan Lian, Botao Liu, Jingyun Ma, Xiaodong Hu, Zhewei Zhang, Ting Zhang, Qifeng Lu, Mingming Hao

Abstract

The exploration of multi-dimensional brain activity with high temporal and spatial resolution is of great significance in the diagnosis of neurological disease and the study of brain science. Although the integration of electroencephalogram (EEG) with magnetic resonance imaging (MRI) and computed tomography (CT) provides a potential solution to achieve a brain-functional image with high spatiotemporal resolution, the critical issues of interface stability and magnetic compatibility remain challenging. Therefore, in this research, we proposed a conductive hydrogel EEG electrode with an asymmetrical bilayer structure, which shows the potential to overcome the challenges. Benefiting from the bilayer structure with different moduli, the hydrogel electrode exhibits high biological and mechanical compatibility with the heterogeneous brain-electrode interface. As a result, the impedance can be reduced compared with conventional metal electrodes. In addition, the hydrogel-based ionic conductive electrodes, which are free from metal conductors, are compatible with MRI and CT. Therefore, they can obtain high spatiotemporal resolution multi-dimensional brain information in clinical settings. The research outcome provides a new approach for establishing a platform for early diagnosis of brain diseases and the study of brain science.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。