An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation

地下盲鼹鼠 Spalax 的促红细胞生成素受体细胞外区增强受体成熟

阅读:6
作者:Orly Ravid, Imad Shams, Nathalie Ben Califa, Eviatar Nevo, Aaron Avivi, Drorit Neumann

Abstract

Erythropoietic functions of erythropoietin (EPO) are mediated by its receptor (EPO-R), which is present on the cell surface of erythroid progenitors and induced by hypoxia. We focused on EPO-R from Spalax galili (sEPO-R), one of the four Israeli species of the subterranean blind mole rat, Spalax ehrenbergi superspecies, as a special natural animal model of high tolerance to hypoxia. Led by the intriguing observation that most of the mouse EPO-R (mEPO-R) is retained in the endoplasmic reticulum (ER), we hypothesized that sEPO-R is expressed at higher levels on the cell surface, thus maximizing the response to elevated EPO, which has been reported in this species. Indeed, we found increased cell-surface levels of sEPO-R as compared with mEPO-R by using flow cytometry analysis of BOSC cells transiently expressing HA-tagged EPO-Rs (full length or truncated). We then postulated that unique extracellular sEPO-R sequence features contribute to its processing and cell-surface expression. To map these domains of the sEPO-R that augment receptor maturation, we generated EPO-R derivatives in which parts of the extracellular region of mEPO-R were replaced with the corresponding fragments of sEPO-R. We found that an extracellular portion of sEPO-R, harboring the N-glycosylation site, conferred enhanced maturation and increased transport to the cell surface of the respective chimeric receptor. Taken together, we demonstrate higher surface expression of sEPO-R, attributed at least in part to increased ER exit, mediated by an extracellular region of this receptor. We speculate that these sEPO-R sequence features play a role in the adaptation of Spalax to extreme hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。