An infrared photothermoelectric detector enabled by MXene and PEDOT:PSS composite for noncontact fingertip tracking

采用 MXene 和 PEDOT:PSS 复合材料实现的红外光热电探测器,用于非接触式指尖追踪

阅读:7
作者:Jiaqi Wang, Zhemiao Xie, Guanxuan Lu, Jiayu Alexander Liu, John T W Yeow

Abstract

Photothermoelectric (PTE) detectors functioning on the infrared spectrum show much potential for use in many fields, such as energy harvesting, nondestructive monitoring, and imaging fields. Recent advances in low-dimensional and semiconductor materials research have facilitated new opportunities for PTE detectors to be applied in material and structural design. However, these materials applied in PTE detectors face some challenges, such as unstable properties, high infrared reflection, and miniaturization issues. Herein, we report our fabrication of scalable bias-free PTE detectors based on Ti3C2 and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) composites and characterization of their composite morphology and broadband photoresponse. We also discuss various PTE engineering strategies, including substrate choices, electrode types, deposition methods, and vacuum conditions. Furthermore, we simulate metamaterials using different materials and hole sizes and fabricated a gold metamaterial with a bottom-up configuration by simultaneously combining MXene and polymer, which achieved an infrared photoresponse enhancement. Finally, we demonstrate a fingertip gesture response using the metamaterial-integrated PTE detector. This research proposes numerous implications of MXene and its related composites for wearable devices and Internet of Things (IoT) applications, such as the continuous biomedical tracking of human health conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。