Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study

人类骨关节炎软骨中蛋白酶激活受体 2 的激活上调能够诱导软骨退化的分解代谢和促炎途径:一项基础科学研究

阅读:4
作者:Christelle Boileau, Nathalie Amiable, Johanne Martel-Pelletier, Hassan Fahmi, Nicolas Duval, Jean-Pierre Pelletier

Abstract

Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 microM), interleukin 1 beta (IL-1beta) (100 pg/mL), tumor necrosis factor-alpha (TNF-alpha) (5 ng/mL), transforming growth factor-beta-1 (TGF-beta1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-kappaB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-kappaB in the presence or absence of the PAR-2-AP and/or IL-1beta. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1beta (p < 0.006) and TNF-alpha (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 microM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 microM (both p < 0.005) and MMP-13 at 100 microM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1beta produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。