Differential expression of the eukaryotic release factor 3 (eRF3/GSPT1) according to gastric cancer histological types

真核释放因子 3 (eRF3/GSPT1) 在不同胃癌组织学类型中的表达差异

阅读:4
作者:J Malta-Vacas, C Aires, P Costa, A R Conde, S Ramos, A P Martins, C Monteiro, M Brito

Aims

To investigate gene expression patterns of eukaryotic releasing factor 3 (eRF3) in gastric cancer.

Background

There are now several lines of evidence to suggest that protein synthesis and translation factors are involved in the regulation of cell proliferation and cancer development. Aims: To investigate gene expression patterns of eukaryotic releasing factor 3 (eRF3) in gastric cancer.

Conclusions

Overexpression of eRF3/GSPT1 in intestinal type gastric tumours may lead to an increase in the translation efficiency of specific oncogenic transcripts. Alternatively, eRF3/GSPT1 may be involved in tumorigenesis as a result of its non-translational roles, namely (dis)regulating the cell cycle, apoptosis, or transcription.

Methods

RNA was prepared from 25 gastric tumour biopsies and adjacent non-neoplastic mucosa. Real time TaqMan reverse transcription polymerase chain reaction (RT-PCR) was performed to measure the relative gene expression levels. DNA was isolated from tumour and normal tissues and gene dosage was determined by a quantitative real time PCR using SYBR Green dye.

Results

Different histological types of gastric tumours were analysed and nine of the 25 tumours revealed eRF3/GSPT1 overexpression; moreover, eight of the 12 intestinal type carcinomas analysed overexpressed the gene, whereas eRF3/GSPT1 was overexpressed in only one of the 10 diffuse type carcinomas (Kruskal-Wallis Test; p < 0.05). No correlation was found between ploidy and transcript expression levels of eRF3/GSPT1. Overexpression of eRF3/GSPT1 was not associated with increased translation rates because the upregulation of eRF3/GSPT1 did not correlate with increased eRF1 levels. Conclusions: Overexpression of eRF3/GSPT1 in intestinal type gastric tumours may lead to an increase in the translation efficiency of specific oncogenic transcripts. Alternatively, eRF3/GSPT1 may be involved in tumorigenesis as a result of its non-translational roles, namely (dis)regulating the cell cycle, apoptosis, or transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。