Fusobacterium nucleatum determines the expression of amphetamine-induced behavioral responses through an epigenetic phenomenon

具核梭杆菌通过表观遗传现象决定苯丙胺诱导的行为反应的表达

阅读:8
作者:Samuel J Mabry, Xixi Cao, Yanqi Zhu, Caleb Rowe, Shalin Patel, Camila González-Arancibia, Tiziana Romanazzi, David P Saleeby, Anna Elam, Hui-Ting Lee, Serhat Turkmen, Shelby N Lauzon, Cesar E Hernandez, HaoSheng Sun, Hui Wu, Angela M Carter, Aurelio Galli

Abstract

Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD. However, the mechanistic roles of microbes in AUD are unknown. Fusobacterium nucleatum (Fn) is a bacterium that increases in abundance in both rats and humans upon AMPH exposure. Fn releases short-chain fatty acids (SCFAs), bacterial byproducts thought to play a fundamental role in the gut-brain axis as well as the pathogenesis of AUD. We demonstrate that in gnotobiotic Drosophila melanogaster, colonization with Fn or dietary supplementation of the SCFA butyrate, a potent inhibitor of histone deacetylases (HDACs), enhances the psychomotor and rewarding properties of AMPH as well as its ability to promote male sexual motivation. Furthermore, solely HDAC1 RNAi targeted inhibition recapitulates these enhancements, pointing to a specific process underlying this Fn phenomenon. Of note is that the expression of these AMPH behaviors is determined by the increase in extracellular dopamine (DA) levels that result from AMPH-induced reversal of DA transporter (DAT) function, termed non-vesicular DA release (NVDR). The magnitude of AMPH-induced NVDR is dictated, at least in part, by DAT expression levels. Consistent with our behavioral data, we show that Fn, butyrate, and HDAC1 inhibition enhance NVDR by elevating DAT expression. Thus, the participation of Fn in AUD stems from its ability to release butyrate and inhibit HDAC1. These data offer a microbial target and probiotic interventions for AUD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。