Optogenetic inhibition of ventrolateral orbitofrontal cortex astrocytes facilitates ventrolateral periaqueductal gray glutamatergic activity to reduce hypersensitivity in infraorbital nerve injury rat model

光遗传学抑制腹外侧眶额皮质星形胶质细胞可促进腹外侧中脑导水管周围灰质谷氨酸能活动,从而降低眶下神经损伤大鼠模型中的过敏反应

阅读:18
作者:Jaisan Islam #, Md Taufiqur Rahman #, Muhammad Ali, Hyong Kyu Kim, Elina Kc, Young Seok Park

Background

Trigeminal neuropathic pain (TNP) is a chronic condition characterized by heightened nociceptive responses and neuroinflammatory changes. While astrocytes are recognized as critical players in pain modulation, their specific role in influencing descending trigeminal pain pathways via ventrolateral orbitofrontal cortex (vlOFC) activity modulation remains underexplored. Therefore, we investigated the impact of optogenetic modulation of astrocytes in the vlOFC on pain hypersensitivity in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Method: Adult female Sprague Dawley rats underwent ION constriction to mimic TNP symptoms, with naive and sham animals serving as controls. AAV8-GFAP-hChR2-mCherry, AAV8-GFAP-eNpHR3.0-mCherry, or AAV8-GFAP-mCherry were delivered to the vlOFC for in vivo optogenetic manipulation. Pain behaviors were assessed using acetone, von Frey, and elevated plus maze tests, while electrophysiological recordings from the ventrolateral periaqueductal gray (vlPAG) and ventral posteromedial (VPM) thalamus were obtained.

Conclusion

These findings suggest that the astrocytic subpopulation in the vlOFC and its robust influence on vlPAG glutamatergic neurons play a crucial role in restoring descending pain processing pathways, potentially contributing to the development of novel therapeutic approaches for TNP management.

Results

Orofacial hyperalgesia, reduced vlPAG activity, and thalamic hyperexcitability were associated with vlOFC astrocytic hyperactivity in the TNP animals. In contrast, optogenetic inhibition of vlOFC astrocytes restored vlOFC glutamatergic signaling, increased vlPAG glutamatergic neuronal activity, and reduced hyperactivity in the VPM thalamus. Behavioral assessments also revealed alleviation of hyperalgesia, allodynia, and anxiety-like behaviors during the stimulation-ON phase, alongside reduced neuroinflammatory markers, including P2 × 3 and Iba-1. However, astrocytic excitation and null virus controls did not alter TNP responses, underscoring the specificity of astrocytic inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。