Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia

内皮集落形成细胞条件培养基促进体外血管生成并预防实验性支气管肺发育不良中的肺动脉高压

阅读:5
作者:Christopher D Baker, Gregory J Seedorf, Benjamin L Wisniewski, Claudine P Black, Sharon L Ryan, Vivek Balasubramaniam, Steven H Abman

Abstract

Late-outgrowth endothelial colony-forming cells (ECFCs), a type of circulating endothelial progenitor cell (EPC), may contribute to pulmonary angiogenesis during development. Cord blood ECFCs from preterm newborns proliferate more rapidly than term ECFCs but are more susceptible to the adverse effects of hyperoxia. Recent studies suggest that bone marrow-derived EPCs protect against experimental lung injury via paracrine mechanisms independent of vascular engraftment. To determine whether human umbilical cord blood ECFCs from preterm and term newborns have therapeutic benefit in experimental neonatal lung injury, we isolated cord blood ECFCs from full-term and preterm newborns and prepared ECFC-conditioned medium (CM) to test its therapeutic benefit on fetal pulmonary artery endothelial cell (PAEC) proliferation and function as well as alveolar type 2 (AT2) cell growth. PAECs and AT2 cells were isolated from late-gestation fetal sheep. Additionally, we administered both ECFCs and ECFC-CM to bleomycin-exposed newborn rats, an experimental model of bronchopulmonary dysplasia (BPD). Both term ECFC-CM and preterm ECFC-CM promoted cell growth and angiogenesis in vitro. However, when ECFC-CM was collected during exposure to mild hyperoxia, the benefit of preterm ECFC-CM was no longer observed. In the bleomycin model of BPD, treatment with ECFC-CM (or CM from mature EC) effectively decreased right ventricular hypertrophy but had no effect on alveolar septation. We conclude that term ECFC-CM is beneficial both in vitro and in experimental BPD. During oxidative stress, preterm ECFC-CM, but not term ECFC-CM, loses its benefit. The inability of term ECFC-CM to promote alveolarization may limit its therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。