Background
Autophagy induction is an effective approach for OA therapy. IL-1β is one of the major inflammatory cytokines linked to OA pathological progression, and its receptor blockade interrupts OA cartilage destruction. The
Conclusions
IL-1Ra restored autophagy and attenuated ECM degradation, with an implication that blocking IL-1β combined with enhancing autophagy might be a potential therapeutic strategy for OA.
Methods
IL-1β-treated rat and human OA chondrocytes were cultured in response to IL-1Ra. The expression and distribution of signal molecules regulating ECM synthesis and autophagy were investigated via western blotting, immunoprecipitation, real-time PCR, immunofluorescence, and transmission electron microscope technique. Furthermore, after intra-articular injection of IL-1Ra, TAT-Beclin1, and a combination of both in a rat OA model established by anterior cruciate ligament transection and medial meniscus resection, the morphological changes of cartilage and related signal molecule expression levels were monitored using H.E., Safranin O-Fast green, and immunohistochemistry staining.
Results
Reduced autophagy by IL-1β contributed to ECM degradation, and blockade of IL-1β by IL-1Ra restored autophagy and attenuated ECM degradation in rat and human OA chondrocytes, as well as in a rat OA model. Akt/mTOR/ULK1, Akt/mTOR/NF-κB, and LC3B deacetylation were involved in autophagy regulated by IL-1β. Intra-articular injection of IL-1Ra combined with TAT-Beclin1 was more effective than IL-1Ra alone. Conclusions: IL-1Ra restored autophagy and attenuated ECM degradation, with an implication that blocking IL-1β combined with enhancing autophagy might be a potential therapeutic strategy for OA.
