Illuminating the Terminal Nerve: Uncovering the Link between GnRH-1 and Olfactory Development

照亮终末神经:揭示 GnRH-1 与嗅觉发育之间的联系

阅读:6
作者:Enrico Amato, Ed Zandro M Taroc, Paolo E Forni

Abstract

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), Gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the olfactory placode induce olfactory bulb morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the terminal nerve axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal (HPG) axis. Kallmann syndrome is characterized by impaired olfactory system development, defective olfactory bulbs, defective secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the Prokineticin-2/Prokineticin-Receptor-2 (Prokr2) signaling pathway in olfactory bulb morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome, and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of olfactory bulb morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons that are distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum. Key points: 1) Pioneer or terminal nerve neurons play a crucial role in initiating the development of the olfactory bulbs. We found that the Prokineticin Receptor-2 gene, associated with Kallmann syndrome, is expressed by the olfactory pioneer/terminal nerve neurons.2) We genetically traced, isolated, and conducted Single-cell RNA sequencing on terminal nerve neurons of rodents. This analysis revealed a significant enrichment of gene expression related to Kallmann syndrome.3) Our study indicates that the investigation of Pioneer/terminal nerve neurons should be a pivotal focal point for comprehending developmental defects affecting olfactory and GnRH-1 systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。