Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor

伊马替尼通过同时抑制血小板衍生的生长因子受体的激活和表皮生长因子受体的转录激活来阻止髓母细胞瘤细胞的迁移和侵袭

阅读:5
作者:Thamara J Abouantoun, Tobey J MacDonald

Abstract

Platelet-derived growth factor (PDGF) receptor (PDGFR) expression correlates with metastatic medulloblastoma. PDGF stimulation of medulloblastoma cells phosphorylates extracellular signal-regulated kinase (ERK) and promotes migration. We sought to determine whether blocking PDGFR activity effectively inhibits signaling required for medulloblastoma cell migration and invasion. DAOY and D556 human medulloblastoma cells were treated with imatinib mesylate (Gleevec), a PDGFR tyrosine kinase inhibitor, or transfected with small interfering RNA (siRNA) to PDGFRB to test the effects of blocking PDGFR phosphorylation and expression, respectively. PDGFR cell signaling, migration, invasion, survival, and proliferation following PDGF-BB stimulation, with and without PDGFR inhibition, were measured. PDGF-BB treatment of cells increased PDGFRB, Akt and ERK phosphorylation, and transactivated epidermal growth factor receptor (EGFR), which correlated with enhanced migration, survival, and proliferation. Imatinib (1 μmol/L) treatment of DAOY and D556 cells inhibited PDGF-BB- and serum-mediated migration and invasion at 24 and 48 h, respectively, and concomitantly inhibited PDGF-BB activation of PDGFRB, Akt, and ERK but increased PTEN expression and activity. Imatinib treatment also induced DAOY cell apoptosis at 72 h and inhibited DAOY and D556 cell proliferation at 48 h. siRNA silencing of PDGFRB similarly inhibited signaling, migration, and survival and both siRNA and imatinib treatment inhibited PDGF-BB-mediated EGFR transactivation, indicating that the effects of imatinib treatment are specific to PDGFRB target inhibition. These results indicate that PDGFRB tyrosine kinase activity is critical for migration and invasion of medulloblastoma cells possibly by transactivating EGFR; thus, imatinib may represent an important novel therapeutic agent for the treatment of medulloblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。