Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits

滑膜间充质干细胞椎间盘移植通过抑制兔髓核细胞中基质金属蛋白酶相关基因来防止椎间盘退变

阅读:4
作者:Takashi Miyamoto, Takeshi Muneta, Takashi Tabuchi, Kenji Matsumoto, Hirohisa Saito, Kunikazu Tsuji, Ichiro Sekiya

Conclusions

Synovial MSCs injected into the nucleus pulposus space promoted synthesis of the remaining nucleus pulposus cells to type II collagen and inhibition of expressions of degradative enzymes and inflammatory cytokines, resulting in maintaining the structure of the intervertebral disc being maintained.

Methods

The nucleus pulposus tissues of rabbit's intervertebral discs were aspirated to induce disc degeneration, and allogenic synovial MSCs were transplanted. At 2, 4, 6, 8, 16, 24 weeks postoperatively, we evaluated with imaging analyses such as X-ray and magnetic resonance imaging (MRI), and histological analysis. To investigate interaction between synovial MSCs and nucleus pulposus cells, human synovial MSCs and rat nucleus pulposus cells were co-cultured, and species specific microarray were performed.

Results

The existence of transplanted cells labeled with DiI or derived from green fluorescent protein (GFP)-expressing transgenic rabbits was confirmed up until 24 weeks. X-ray analyses demonstrated that intervertebral disc height in the MSC group remained higher than that in the degeneration group. T2 weighted MR imaging showed higher signal intensity of nucleus pulposus in the MSC group. Immunohistological analyses revealed higher expression of type II collagen around nucleus pulposus cells in the MSC group compared with even that of the normal group. In co-culture of rat nucleus pulposus cells and human synovial MSCs, species specific microarray revealed that gene profiles of nucleus pulposus were altered markedly with suppression of genes relating matrix degradative enzymes and inflammatory cytokines. Conclusions: Synovial MSCs injected into the nucleus pulposus space promoted synthesis of the remaining nucleus pulposus cells to type II collagen and inhibition of expressions of degradative enzymes and inflammatory cytokines, resulting in maintaining the structure of the intervertebral disc being maintained.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。