Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties

结构和功能各异的硫酸肝素的生物合成:两种具有不同表达模式和特性的人类硫酸肝素 6-O-磺基转移酶-2 的剪接形式

阅读:7
作者:Hiroko Habuchi, Goichiro Miyake, Ken Nogami, Asato Kuroiwa, Yoichi Matsuda, Marion Kusche-Gullberg, Osami Habuchi, Masayuki Tanaka, Koji Kimata

Abstract

Heparan sulphate 6- O -sulphotransferase (HS6ST) catalyses the transfer of sulphate from adenosine 3'-phosphate, 5'-phosphosulphate to the 6th position of the N -sulphoglucosamine residue in HS. We previously described the occurrence of three isoforms of mouse HS6ST, mHS6ST-1, -2, and -3 [Habuchi, Tanaka, Habuchi, Yoshida, Suzuki, Ban and Kimata (2000) J. Biol. Chem. 275, 2859-2868]. In the present study, we have characterized HS6ST-2 and HS6ST-1 human isologues, including their chromosomal localizations. In the process of their cDNA cloning, we found two forms of HS6ST-2: the original (hHS6ST-2) and a short form (hHS6ST-2S) with 40 amino acids deleted. Both hHS6ST-2 and hHS6ST-2S catalysed the same sulphation reaction, but their preferences for sulphation sites in HS substrates were different. Dot-blot analysis of the two forms showed that the original form was exclusively expressed in adult and foetal brain tissues, whereas the short form was expressed preferentially in ovary, placenta and foetal kidney, suggesting that the expression of two forms of hHS6ST-2 is strictly regulated to yield tissue-dependent differences in the fine structure of HS. A refined analysis of their reaction products has led us to another finding, that HS6STs could also transfer sulphate to N -sulphoglucosamine residues located at the non-reducing terminal of HS with high affinity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。