Biotechnological production of the angiotensin-converting enzyme inhibitory dipeptide isoleucine-tryptophan

血管紧张素转换酶抑制二肽异亮氨酸-色氨酸的生物技术生产

阅读:8
作者:Lydia Michelke, Andreas Deussen, Karina Kettner, Peter Dieterich, Diana Hagemann, Thomas M Kriegel, Melanie Martin

Abstract

Peptides with angiotensin-converting enzyme (ACE)-inhibitory and antihypertensive effects are suggested as innovative food additives to prevent or treat hypertension. Currently, these substances are isolated from food proteins following nonselective hydrolysis as a mixture of ACE-inhibitory peptides and other protein fragments. This study presents an innovative biotechnological method, based on recombinant DNA technology that was established to specifically produce the ACE-inhibitory dipeptide isoleucine-tryptophan. In a first step, a repetitive isoleucine-tryptophan construct fused to the maltose-binding protein was generated and expressed in Escherichia coli BL21 cells. The chromatographically purified recombinant fusion protein was enzymatically hydrolyzed using α-chymotrypsin to liberate the dipeptide isoleucine-tryptophan. The identity of the liberated isoleucine-tryptophan was confirmed by MS and derivatization of its N-terminus. The ACE-inhibitory effect of the recombinant dipeptide on soluble and membrane bound ACE was found to be indistinguishable from the inhibitory potential of the chemically produced commercially available dipeptide. The established experimental strategy represents a promising approach to the biotechnical production of sufficient amounts of recombinant peptide-based ACE-inhibitory and antihypertensive substances that are applicable as functional food additives to delay or even prevent hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。