Controlled regulation of erythropoietin by primary cultured renal cells for renal failure induced anemia

原代培养肾细胞对促红细胞生成素的调控对肾衰竭引起的贫血

阅读:9
作者:Kenneth Gyabaah, Tamer Aboushwareb, Nadia Guimaraes Souza, Liliya Yamaleyeva, Adam Varner, Hung-Jen Wang, Anthony Atala, James J Yoo

Conclusions

These findings indicate that primary renal cells have the ability to regulate erythropoietin gene expression and release through environment dependent mechanisms. This also suggests that with further study the possibility exists of developing these cells as a potential method to treat renal failure induced anemia.

Methods

Primary rat renal cells were exposed to different hypoxic (0.1% to 1% O(2)) and normoxic environments. Erythropoietin expression was assessed using reverse transcriptase-polymerase chain reaction. Erythropoietin production was measured in culture medium using Meso Scale Discovery® assays.

Purpose

Renal failure induced anemia develops as a result of inadequate production of erythropoietin, which is the primary regulator of red blood cell production. We previously noted that culture expanded primary renal cells stably express erythropoietin and suggested that these cells may be used as a potential treatment for renal failure induced anemia. We investigated whether these cells are able to regulate erythropoietin expression in a controlled manner under different oxygen and environmental conditions. Materials and

Results

Cultured renal cells expressed high levels of erythropoietin under hypoxia for up to 24 hours with a gradual decrease thereafter. However, erythropoietin expression was decreased when cells were switched from a hypoxic to a normoxic environment within the initial 24 hours. This indicated that cultured renal cells have the capacity to sense environmental oxygen tension and regulate erythropoietin expression accordingly. In addition, erythropoietin release in medium followed a pattern similar to that of gene expression under normoxic and hypoxic conditions. Conclusions: These findings indicate that primary renal cells have the ability to regulate erythropoietin gene expression and release through environment dependent mechanisms. This also suggests that with further study the possibility exists of developing these cells as a potential method to treat renal failure induced anemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。