Transmigration across activated endothelium induces transcriptional changes, inhibits apoptosis, and decreases antimicrobial protein expression in human monocytes

跨活化内皮细胞的迁移会诱导转录变化、抑制细胞凋亡并降低人类单核细胞中的抗菌蛋白表达

阅读:5
作者:Marcie R Williams, Yumiko Sakurai, Susu M Zughaier, Suzanne G Eskin, Larry V McIntire

Abstract

We investigated the hypothesis that transmigration drives monocyte transcriptional changes. Using Agilent whole human genome microarrays, we identified over 692 differentially expressed genes (2x, P<0.05) in freshly isolated human monocytes following 1.5 h of transmigration across IL-1beta-stimulated ECs compared with untreated monocytes. Genes up-regulated by monocyte transmigration belong to a number of over-represented functional groups including immune response and inhibition of apoptosis. qRT-PCR confirmed increased expression of MCP-1 and -3 and of NAIP following monocyte transmigration. Additionally, quantification of Annexin V binding revealed a reduction in apoptosis following monocyte transmigration. Comparison of gene expression in transmigrated monocytes with additional controls (monocytes that failed to transmigrate and monocytes incubated beneath stimulated ECs) revealed 89 differentially expressed genes, which were controlled by the process of diapedesis. Functional annotation of these genes showed down-regulation of antimicrobial genes (e.g., alpha-defensin down 50x, cathelicidin down 9x, and CTSG down 3x). qRT-PCR confirmed down-regulation of these genes. Immunoblots confirmed that monocyte diapedesis down-regulates alpha-defensin protein expression. However, transmigrated monocytes were functional and retained intact cytokine and chemokine release upon TLR ligand exposure. Overall, these data indicate that the process of monocyte transmigration across stimulated ECs promotes further monocyte recruitment and inhibits monocyte apoptosis. Unexpectedly, following transmigration, monocytes displayed reduced antimicrobial protein expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。