Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers

强效 γ-分泌酶调节剂对多个早老素 1 诱导的多能干细胞突变携带者来源的人类神经元的影响

阅读:8
作者:Qing Liu, Shannon Waltz, Grace Woodruff, Joe Ouyang, Mason A Israel, Cheryl Herrera, Floyd Sarsoza, Rudolph E Tanzi, Edward H Koo, John M Ringman, Lawrence S B Goldstein, Steven L Wagner, Shauna H Yuan

Objective

To analyze purified neurons derived from human induced pluripotent stem cells from patients carrying 3 different presenilin 1 (PS1) mutations and nondemented control individuals in the absence of any overexpression. We tested the efficacy of γ-secretase inhibitor and γ-secretase modulator (GSM) in neurons derived from both normal control and 3 PS1 mutations (A246E, H163R, and M146L). Design, setting, and participants: Adult human skin biopsies were obtained from volunteers at the Alzheimer Disease Research Center, University of California, San Diego. Cell cultures were treated with γ-secretase inhibitor or GSM. Comparisons of total β-amyloid (Aβ) and Aβ peptides 38, 40, and 42 in the media were made between vehicle- vs drug-treated cultures. Main outcomes and measures: Soluble Aβ levels in the media were measured by enzyme-linked immunosorbent assay.

Results

As predicted, mutant PS1 neurons exhibited an elevated Aβ42:Aβ40 ratio (P < .05) at the basal state as compared with the nondemented control neurons. Treatment with a potent non-nonsteroidal anti-inflammatory druglike GSM revealed a new biomarker signature that differs from all previous cell types and animals tested. This new signature was the same in both the mutant and control neurons and consisted of a reduction in Aβ42, Aβ40, and Aβ38 and in the Aβ42:Aβ40 ratio, with no change in the total Aβ levels. Conclusions and relevance: This biomarker discrepancy is likely due to overexpression of amyloid precursor protein in the transformed cellular models. Our results suggest that biomarker signatures obtained with such models are misleading and that human neurons derived from human induced pluripotent stem cells provide a unique signature that will more accurately reflect drug response in human patients and in cerebrospinal fluid biomarker changes observed during GSM treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。