Artificial Intelligence Analysis of Ulcerative Colitis Using an Autoimmune Discovery Transcriptomic Panel

使用自身免疫发现转录组面板对溃疡性结肠炎进行人工智能分析

阅读:8
作者:Joaquim Carreras

Abstract

Ulcerative colitis is a bowel disease of unknown cause. This research is a proof-of-concept exercise focused on determining whether it is possible to identify the genes associated with ulcerative colitis using artificial intelligence. Several machine learning and artificial neural networks analyze using an autoimmune discovery transcriptomic panel of 755 genes to predict and model ulcerative colitis versus healthy donors. The dataset GSE38713 of 43 cases from the Hospital Clinic of Barcelona was selected, and 16 models were used, including C5, logistic regression, Bayesian network, discriminant analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural network. Conventional analysis, including volcano plot and gene set enrichment analysis (GSEA), were also performed. As a result, ulcerative colitis was successfully predicted with several machine learning techniques and artificial neural networks (multilayer perceptron), with an overall accuracy of 95-100%, and relevant pathogenic genes were highlighted. One of them, programmed cell death 1 ligand 1 (PD-L1, CD274, PDCD1LG1, B7-H1) was validated in a series from the Tokai University Hospital by immunohistochemistry. In conclusion, artificial intelligence analysis of transcriptomic data of ulcerative colitis is a feasible analytical strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。