Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling

通过活细胞邻近标记绘制表皮葡萄球菌生物膜中蛋白质-胞外多糖结合相互作用

阅读:7
作者:Luan H Vo, Steven Hong, Kaitlyn E Stepler, Sureshee M Liyanaarachchi, Jack Yang, Peter Nemes, Myles B Poulin

Abstract

Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. Staphylococcus epidermidis is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β-N-acetylglucosamine (PNAG) as a major structural component. In this study, we have developed a live cell proximity labeling approach combined with quantitative mass spectrometry-based proteomics to map the PNAG interactome of live S. epidermidis biofilms. Through these measurements we discovered elastin-binding protein (EbpS) as a major PNAG-interacting protein. Using live cell binding measurements, we found that the lysin motif (LysM) domain of EbpS specifically binds to PNAG present in S. epidermidis biofilms. Our work provides a novel method for the rapid identification of exopolysaccharide-binding proteins in live biofilms that will help to extend our understanding of the biomolecular interactions that are required for bacterial biofilm formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。