The Influences of Pore Blockage by Natural Organic Matter and Pore Dimension Tuning on Pharmaceutical Adsorption onto GO-Fe3O4

天然有机物堵塞孔隙及孔径调节对GO-Fe3O4吸附药物的影响

阅读:5
作者:Ming-Cyuan He, Sian-Jhang Lin, Tao-Cheng Huang, Guan-Fu Chen, Yen-Ping Peng, Wei-Hsiang Chen

Abstract

The ubiquitous presence of pharmaceutical pollution in the environment and its adverse impacts on public health and aquatic ecosystems have recently attracted increasing attention. Graphene oxide coated with magnetite (GO-Fe3O4) is effective at removing pharmaceuticals in water by adsorption. However, the myriad compositions in real water are known to adversely impact the adsorption performance. One objective of this study was to investigate the influence of pore blockage by natural organic matter (NOM) with different sizes on pharmaceutical adsorption onto GO-Fe3O4. Meanwhile, the feasibility of pore dimension tuning of GO-Fe3O4 for selective adsorption of pharmaceuticals with different structural characteristics was explored. It was shown in the batch experiments that the adsorbed pharmaceutical concentrations onto GO-Fe3O4 were significantly affected (dropped by 2-86%) by NOM that had size ranges similar to the pore dimensions of GO-Fe3O4, as the impact was enhanced when the adsorption occurred at acidic pHs (e.g., pH 3). Specific surface areas, zeta potentials, pore volumes, and pore-size distributions of GO-Fe3O4 were influenced by the Fe content forming different-sized Fe3O4 between GO layers. Low Fe contents in GO-Fe3O4 increased the formation of nano-sized pores (2.0-12.5 nm) that were efficient in the adsorption of pharmaceuticals with low molecular weights (e.g., 129 kDa) or planar structures via size discrimination or inter-planar π-π interaction, respectively. As excess larger-sized pores (e.g., >50 nm) were formed on the surface of GO-Fe3O4 due to higher Fe contents, pharmaceuticals with larger molecular weights (e.g., 296 kDa) or those removed by electrostatic attraction between the adsorbate and adsorbent dominated on the GO-Fe3O4 surface. Given these observations, the surface characteristics of GO-Fe3O4 were alterable to selectively remove different pharmaceuticals in water by adsorption, and the critical factors determining the adsorption performance were discussed. These findings provide useful views on the feasibility of treating pharmaceutical wastewater, recycling valuable pharmaceuticals, or removing those with risks to public health and ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。