DNA methyltransferase 1o functions during preimplantation development to preclude a profound level of epigenetic variation

DNA 甲基转移酶 1o 在植入前发育过程中发挥作用,以阻止深层次的表观遗传变异

阅读:8
作者:M Cecilia Cirio, Josee Martel, Mellissa Mann, Marc Toppings, Marisa Bartolomei, Jacquetta Trasler, J Richard Chaillet

Abstract

Most mouse embryos developing in the absence of the oocyte-derived DNA methyltransferase 1o (DNMT1o-deficient embryos) have significant delays in development and a wide range of anatomical abnormalities. To understand the timing and molecular basis of such variation, we studied pre- and post-implantation DNA methylation as a gauge of epigenetic variation among these embryos. DNMT1o-deficient embryos showed extensive differences in the levels of methylation in differentially methylated domains (DMDs) of imprinted genes at the 8-cell stage. Because of independent assortment of the methylated and unmethylated chromatids created by the loss of DNMT1o, the deficient embryos were found to be mosaics of cells with different, but stable epigenotypes (DNA methylation patterns). Our results suggest that loss of DNMT1o in just one cell cycle is responsible for the extensive variation in the epigenotypes in both embryos and their associated extraembryonic tissues. Thus, the maternal-effect DNMT1o protein is uniquely poised during development to normally ensure uniform parental methylation patterns at DMDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。