Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization

膜结合 HIV 片段上的抗体力学对于 GP41 靶向病毒中和至关重要

阅读:8
作者:Mikyung Kim, Zhen-Yu J Sun, Kasper D Rand, Xiaomeng Shi, Likai Song, Yuxing Cheng, Amr F Fahmy, Shreoshi Majumdar, Gilad Ofek, Yongping Yang, Peter D Kwong, Jia-Huai Wang, John R Engen, Gerhard Wagner, Ellis L Reinherz

Abstract

Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity. To understand this paradox, we used biophysical methods to investigate the binding of human 2F5 to the MPER in a membrane environment, where it resides in vivo. Recognition is stepwise, through a paratope more extensive than core binding site contacts alone, and dynamic rearrangement through an apparent scoop-like movement of heavy chain complementarity-determining region 3 (CDRH3) is essential for MPER extraction from the viral membrane. Core-epitope recognition on the virus requires the induction of conformational changes in both the MPER and the paratope. Hence, target neutralization through this lipid-embedded viral segment places stringent requirements on the plasticity of the antibody combining site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。