A highly efficient microwave-assisted synthesis of an LED-curable methacrylated gelatin for bio applications

一种用于生物应用的 LED 固化甲基丙烯酸酯明胶的高效微波辅助合成方法

阅读:7
作者:Sahar Abdollahi Baghban, Morteza Ebrahimi, Shadab Bagheri-Khoulenjani, Manoucher Khorasani

Abstract

This study deals with the development of an LED-curable methacrylated gelatin (GelMA) synthesis via microwave (MW) irradiation with a reaction and purification time-, energy-, and methacrylation reagent-saving approach. To investigate the efficiency of MW irradiation in GelMA synthesis, characteristics of the GelMAs prepared by using glycidyl methacrylate (GMA) or methacrylic anhydride (MA) via the MW-assisted (MWA) method were compared comprehensively with those synthesized via the conventional heating method. Moreover, MWA reaction conditions were optimized in terms of methacrylation reagent concentrations (C), reaction time (t), and MW power (P). Characterization and assessment of the GelMAs were conducted with 1H NMR, FT-IR, and Raman spectroscopy along with physical-mechanical, thermal, and hydrophilicity analysis. The results demonstrated that the MWA synthesized GMA-GelMA hydrogels were possessed of increased methacrylation degree (MD), gel fraction (GF), tensile strength (TS), elongation at break (EB), glass transition temperature (T g), and water contact angle (WCA) as well as decreased swelling degree (SD) values in comparison to those of MA-GelMA and GMA-GelMA hydrogels prepared via the MWA and conventional method, respectively. Enhanced properties of the MWA synthesized GMA-hydrogels suggested an effective methacryloyl conjugation leading to a greater amount of covalent crosslinking density justified by the dipolar moment calculations. Optimal GMA C, t, P, and purification time for a highly crosslinked GelMA hydrogel (MD: 96.1%, GF: 98.3%, SD: 10.11%, TS: 6.7 MPa, EB: 175.2%, T g: 75.34 °C, and WCA: 72.22°) were found to be a 5 times molar excess over the primary amine groups of gelatin, 5 min, 500 W, and 24 h, respectively. Thus, the optimized MW conditions offer a promising green method to prepare GelMAs for bio applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。