Conclusions
Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.
Methods
A total of 41 GCA patients were classified into active disease (n=14) and disease in remission (n=27). GCA patients' and healthy blood donors' (HD) Tregs were sorted and subjected to transcriptome and phenotypic analysis.
Results
Transcriptome analysis revealed 27 genes, which were differentially regulated between GCA-derived and HD-derived Tregs. Among those, we identified transcription factors, glycolytic enzymes and IL-2 signalling mediators. We confirmed the downregulation of forkhead box P3 (FOXP3) and interferon regulatory factor 4 (IRF4) at protein level and identified the ineffective induction of glycoprotein A repetitions predominant (GARP) and CD25 as well as the reduced T cell receptor (TCR)-induced calcium influx as correlates of Treg dysfunction in GCA. Inhibition of glycolysis in HD-derived Tregs recapitulated most identified dysfunctions of GCA Tregs, suggesting the central pathogenic role of the downregulation of the glycolytic enzymes. Separate analysis of the subgroup of tocilizumab-treated patients identified the recovery of the TCR-induced calcium influx and the Treg suppressive function to associate with disease remission. Conclusions: Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.
