Enantiospecific pharmacokinetics and drug-drug interactions of primaquine and blood-stage antimalarial drugs

伯氨喹与血相抗疟药的对映体药代动力学和药物相互作用

阅读:7
作者:Kalayanee Chairat, Podjanee Jittamala, Borimas Hanboonkunupakarn, Sasithon Pukrittayakamee, Warunee Hanpithakpong, Daniel Blessborn, Nicholas J White, Nicholas P J Day, Joel Tarning

Conclusions

Population pharmacokinetic models characterizing the enantiospecific properties of primaquine were developed successfully. Exposure to primaquine, particularly to the (+)-S-primaquine but not the carboxy metabolites, increased by up to 30% when co-administered with commonly used antimalarial drugs. A better mechanistic understanding of primaquine metabolism is required for assessment of its efficacy and haematological toxicity in humans.

Methods

Enantiomeric pharmacokinetics were evaluated in 49 healthy adult volunteers enrolled in three randomized cross-over studies in which a single dose of primaquine was given alone and then, after a suitable washout period, in combination with chloroquine, dihydroartemisinin/piperaquine or pyronaridine/artesunate. Non-linear mixed-effects modelling was used to characterize pharmacokinetics and assess the impact of drug-drug interactions.

Results

The volume of distribution of racemic primaquine was decreased by a median (95% CI) of 22.0% (2.24%-39.9%), 24.0% (15.0%-31.5%) and 25.7% (20.3%-31.1%) when co-administered with chloroquine, dihydroartemisinin/piperaquine and pyronaridine/artesunate, respectively. The oral clearance of primaquine was decreased by a median of 19.1% (14.5%-22.8%) when co-administered with pyronaridine/artesunate. These interactions were enantiospecific with a relatively higher effect on (+)-S-primaquine than on (-)-R-primaquine. No drug-drug interaction effects were seen on the pharmacokinetics of either carboxyprimaquine enantiomer. Conclusions: Population pharmacokinetic models characterizing the enantiospecific properties of primaquine were developed successfully. Exposure to primaquine, particularly to the (+)-S-primaquine but not the carboxy metabolites, increased by up to 30% when co-administered with commonly used antimalarial drugs. A better mechanistic understanding of primaquine metabolism is required for assessment of its efficacy and haematological toxicity in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。