Neuroprotective Effects of Dexamethasone in a Neuromelanin-Driven Parkinson's Disease Model

地塞米松在神经黑色素驱动的帕金森病模型中的神经保护作用

阅读:8
作者:M Garcia-Gomara, A Juan-Palencia, M Alfaro, M Cuadrado-Tejedor, A Garcia-Osta

Abstract

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra that primarily affects movement control. Neuroinflammation plays a pivotal role in driving the disease's progression. The persistent inflammatory state in the brain exacerbates neuronal damage, creating a cycle that perpetuates the neurodegenerative process. Glucocorticoids, such as dexamethasone, have potent anti-inflammatory properties and have been studied for their neuroprotective potential in different neurodegenerative diseases. However, their specific impact on PD remains unclear. This study aimed to evaluate the impact of dexamethasone on a neuromelanin (NM)-driven model of PD. We demonstrated that dexamethasone administration significantly improved motor function and preserved dopaminergic neuron compared to untreated controls in our study. These neuroprotective effects were mediated, at least in part, by suppressing reactive microglia and reducing the infiltration of peripheral immune cells into the brain. Our findings underscore the potential therapeutic benefits of dexamethasone in mitigating neuroinflammation and maintaining neuronal integrity in a NM-driven model of PD. These results advocate for further investigation into glucocorticoid-based therapies as adjunctive treatments for PD, particularly in scenarios where neuroinflammation contributes prominently to disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。