Cyanobacteria newly isolated from marine volcanic seeps display rapid sinking and robust, high-density growth

从海洋火山渗漏中新分离出的蓝藻表现出快速下沉和强劲、高密度生长的特点

阅读:9
作者:Max G Schubert, Tzu-Chieh Tang, Isabella M Goodchild-Michelman, Krista A Ryon, James R Henriksen, Theodore Chavkin, Yanqi Wu, Teemu P Miettinen, Stefanie Van Wychen, Lukas R Dahlin, Davide Spatafora, Gabriele Turco, Michael T Guarnieri, Scott R Manalis, John Kowitz, Elizabeth C Hann, Raja Dhir, Paol

Abstract

Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO&sub2;. We describe complete genome sequences for both isolates and, focusing on UTEX 3222 due to its planktonic growth in liquid, characterize biotechnologically relevant growth and biomass characteristics. UTEX 3222 outpaces other fast-growing model strains on a solid medium. It can double every 2.35 hours in a liquid medium and grows to high density (>31 g/L biomass dry weight) in batch culture, nearly double that of Synechococcus sp. PCC 11901, whose high-density growth was recently reported. In addition, UTEX 3222 sinks readily, settling more quickly than other fast-growing strains, suggesting favorable economics of harvesting UTEX 3222 biomass. These traits may make UTEX 3222 a compelling choice for marine carbon dioxide removal (CDR) and photosynthetic bioproduction from CO&sub2;. Overall, we find that bio-prospecting in environments with naturally elevated CO&sub2; may uncover novel CO&sub2;-metabolizing organisms with unique characteristics. Importance: Cyanobacteria provide a potential avenue for both biomanufacturing and combatting climate change via high-efficiency photosynthetic carbon sequestration. This study identifies novel photosynthetic organisms isolated from a unique geochemical environment and describes their genomes, growth behavior in culture, and biochemical composition. These cyanobacteria appear to make a tractable research model, and cultures are made publicly available alongside information about their culture and maintenance. Application of these organisms to carbon sequestration and/or biomanufacturing is discussed, including unusual, rapid settling characteristics of the strains relevant to scaled culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。