Trapped Chromatin Fibers Damage Flowing Red Blood Cells

被困的染色质纤维损害流动的红细胞

阅读:7
作者:Maedeh Roushan, Mehdi Jorfi, Avanish Mishra, Keith H K Wong, Julianne Jorgensen, Eric Ell, James F Markmann, Jarone Lee, Daniel Irimia

Abstract

Neutrophils are the most abundant white blood cells in the circulation and serve antimicrobial functions. One of their antimicrobial mechanisms involves the release of neutrophil extracellular traps (NETs), long chromatin fibers decorated with antimicrobial granular proteins that contribute to the elimination of pathogens. However, the release of NETs has also been associated with disease processes. While recent research has focused on biochemical reactions catalyzed by NETs, significantly less is known about the mechanical effect of NETs in circulation. Here, microfluidic devices and biophysical models are employed to study the consequences of the interactions between NETs trapped in channels and red blood cells (RBCs) flowing in blood over the NETs. It has been found that the RBCs can be deformed and ruptured after interactions with NETs, generating RBC fragments. Significant increases in the number of RBC fragments have also been found in the circulation of patients with conditions in which NETs have been demonstrated to be present in circulation, including sepsis and kidney transplant. Further studies will probe the potential utility of RBC fragments in the diagnostic, monitoring, and treatment of diseases associated with the presence of NETs in circulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。