Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells

gpt delta 转基因 MEF 细胞对二氧化钛纳米粒子和富勒烯的基因毒性反应

阅读:17
作者:An Xu, Yunfei Chai, Takehiko Nohmi, Tom K Hei

Background

Titanium dioxide (TiO2) nanoparticles and fullerene (C60) are two attractive manufactured nanoparticles with great promise in industrial and medical applications. However, little is known about the genotoxic response of TiO2 nanoparticles and C60 in mammalian cells. In the present study, we determined the mutation fractions induced by either TiO2 nanoparticles or C60 in gpt delta transgenic mouse primary embryo fibroblasts (MEF) and identified peroxynitrite anions (ONOO-) as an essential mediator involved in such process.

Conclusion

Our results provided novel information that both TiO2 nanoparticles and C60 were taken up by cells and induced kilo-base pair deletion mutations in a transgenic mouse mutation system. The induction of ONOO- may be a critical signaling event for nanoparticle genotoxicity.

Results

Both TiO2 nanoparticles and C60 dramatically increased the mutation yield, which could be abrogated by concurrent treatment with the endocytosis inhibitor, Nystatin. Under confocal scanning microscopy together with the radical probe dihydrorhodamine 123 (DHR 123), we found that there was a dose-dependent formation of ONOO- in live MEF cells exposed to either TiO2 nanoparticles or C60, and the protective effects of antioxidants were demonstrated by the nitric oxide synthase (NOS) inhibitor, NG-methyl-L-arginine (L-NMMA). Furthermore, suppression of cyclooxygenase-2 (COX-2) activity by using the chemical inhibitor NS-398 significantly reduced mutation frequency of both TiO2 nanoparticles and C60.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。