Immunization with Mycobacterium tuberculosis-Specific Antigens Bypasses T Cell Differentiation from Prior Bacillus Calmette-Guérin Vaccination and Improves Protection in Mice

结核分枝杆菌特异性抗原的免疫接种绕过了先前卡介苗疫苗接种的 T 细胞分化并提高了小鼠的保护效果

阅读:4
作者:Claus Aagaard, Niels Peter Hell Knudsen, Iben Sohn, Angelo A Izzo, Hongmin Kim, Emma Holsey Kristiansen, Thomas Lindenstrøm, Else Marie Agger, Michael Rasmussen, Sung Jae Shin, Ida Rosenkrands, Peter Andersen, Rasmus Mortensen

Abstract

Despite the fact that the majority of people in tuberculosis (TB)-endemic areas are vaccinated with the Bacillus Calmette-Guérin (BCG) vaccine, TB remains the leading infectious cause of death. Data from both animal models and humans show that BCG and subunit vaccines induce T cells of different phenotypes, and little is known about how BCG priming influences subsequent booster vaccines. To test this, we designed a novel Mycobacterium tuberculosis-specific (or "non-BCG") subunit vaccine with protective efficacy in both mice and guinea pigs and compared it to a known BCG boosting vaccine. In naive mice, this M. tuberculosis-specific vaccine induced similar protection compared with the BCG boosting vaccine. However, in BCG-primed animals, only the M. tuberculosis-specific vaccine added significantly to the BCG-induced protection. This correlated with the priming of T cells with a lower degree of differentiation and improved lung-homing capacity. These results have implications for TB vaccine design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。