IRES-mediated Pichia pastoris cell-free protein synthesis

IRES 介导的毕赤酵母无细胞蛋白质合成

阅读:9
作者:Yanan Wang #, Ting Wang #, Xinjie Chen, Yuan Lu

Abstract

Cell-free protein synthesis (CFPS) system is an ideal platform for fast and convenient protein research and has been used for macromolecular assembly, unnatural amino acid embedding, glycoprotein production, and more. To realize the construction of an efficient eukaryotic CFPS platform with the advantages of low cost and short time, a CFPS system based on the yeast Pichia pastoris was built in this study. The internal ribosomal entry site (IRES) can independently initiate translation and thus promote protein synthesis. The Kozak sequences can facilitate translation initiation. Therefore, the screening of IRES and its combination with Kozak was performed, in which cricket paralysis virus (CRPV) exhibited as the best translation initiation element from 14 different IRESs. Furthermore, the system components and reaction environment were explored. The protein yield was nearly doubled by the addition of RNase inhibitor. The cell extract amount, energy regeneration system (phosphocreatine and phosphocreatine kinase), and metal ions (K+ and Mg2+) were optimized to achieve the best protein synthesis yield. This P. pastoris CFPS system can extend the eukaryotic CFPS platform, providing an enabling technology for fast prototyping design and functional protein synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。