Improving EEG Muscle Artifact Removal With an EMG Array

使用 EMG 阵列改善 EEG 肌肉伪影消除

阅读:6
作者:Juan Andrés Mucarquer, Pavel Prado, María-José Escobar, Wael El-Deredy, Matías Zañartu

Abstract

Removal of artifacts induced by muscle activity is crucial for analysis of the electroencephalogram (EEG), and continues to be a challenge in experiments where the subject may speak, change facial expressions, or move. Ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) has been proven to be an efficient method for denoising of EEG contaminated with muscle artifacts. EEMD-CCA, likewise the majority of algorithms, does not incorporate any statistical information of the artifact, namely, electromyogram (EMG) recorded over the muscles actively contaminating the EEG. In this paper, we propose to extend EEMD-CCA in order to include an EMG array as information to aid the removal of artifacts, assessing the performance gain achieved when the number of EMG channels grow. By filtering adaptively (recursive least squares, EMG array as reference) each component resulting from CCA, we aim to ameliorate the distortion of brain signals induced by artifacts and denoising methods. We simulated several noise scenarios based on a linear contamination model, between real and synthetic EEG and EMG signals, and varied the number of EMG channels available to the filter. Our results exhibit a substantial improvement in the performance as the number of EMG electrodes increase from 2 to 16. Further increasing the number of EMG channels up to 128 did not have a significant impact on the performance. We conclude by recommending the use of EMG electrodes to filter components, as it is a computationally inexpensive enhancement that impacts significantly on performance using only a few electrodes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。