An Embedding 2D/3D Heterostructure Enables High-Performance FA-Alloyed Flexible Perovskite Solar Cells with Efficiency over 20

嵌入式 2D/3D 异质结构可实现高性能 FA 合金柔性钙钛矿太阳能电池,效率超过 20

阅读:6
作者:Zhen Wang, Yuanlin Lu, Zhenhua Xu, Jinlong Hu, Yijun Chen, Cuiling Zhang, Yousheng Wang, Fei Guo, Yaohua Mai

Abstract

Flexible perovskite solar cells (f-PSCs) have attracted increasing attention because of their enormous potential for use in consumer electronic devices. The key to achieve high device performance is to deposit pinhole-free, uniform and defect-less perovskite films on the rough surface of polymeric substrates. Here, a solvent engineering to tailor the crystal morphology of FA-alloyed perovskite films prepared by one-step blade coating is first deployed. It is found that the use of binary solvents DMF:NMP, rather than the conventional DMF:DMSO, enables to deposit dense and uniform FA-alloyed perovskite films on both the rigid and flexible substrates. As a decisive step, an embedding 2D/3D perovskite heterostructure is in situ formed by incorporating a small amount of 4-guanidinobutanoic acid (GBA). Accordingly, photovoltage increases up to 100 mV are realized due to the markedly suppressed nonradiative recombination, leading to high efficiencies of 21.45% and 20.16% on the rigid and flexible substrates, respectively. In parallel, improved mechanical robustness of the flexible devices is achieved due to the presence of the embedded 2D phases. The results underpin the importance of morphology control and defect passivation in delivering high-performance flexible FA-alloyed flexible perovskite devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。