Chronic treatment with terbutaline increases glucose and oleic acid oxidation and protein synthesis in cultured human myotubes

长期使用特布他林治疗可增加培养的人肌管中的葡萄糖和油酸氧化以及蛋白质合成

阅读:5
作者:Christine Skagen, Tuula A Nyman, Xiao-Rong Peng, Gavin O'Mahony, Eili Tranheim Kase, Arild Chr Rustan, G Hege Thoresen

Conclusion

These results suggest that β2-adrenergic receptor have direct effects in human skeletal muscle affecting fuel metabolism and net protein synthesis, effects that might be favourable for both type 2 diabetes and muscle wasting disorders.

Methods

Human cultured myotubes were exposed to terbutaline in various concentrations (0.01-30 ​μM) for 4 or 96 ​h. Thereafter uptake of [14C]deoxy-D-glucose, oxydation of [14C]glucose and [14C]oleic acid were measured. Incorporation of [14C]leucine, gene expression by qPCR and proteomics analyses by mass spectrometry by the STAGE-TIP method were performed after 96 ​h exposure to 1 and 10 ​μM of terbutaline.

Objective

In vivo studies have reported several beneficial metabolic effects of β-adrenergic receptor agonist administration in skeletal muscle, including increased glucose uptake, fatty acid metabolism, lipolysis and mitochondrial biogenesis. Although these effects have been widely studied in vivo, the in vitro data are limited to mouse and rat cell lines. Therefore, we sought to discover the effects of the β2-adrenergic receptor agonist terbutaline on metabolism and protein synthesis in human primary skeletal muscle cells.

Results

The results showed that 4 ​h treatment with terbutaline in concentrations up to 1 ​μM increased glucose uptake in human myotubes, but also decreased both glucose and oleic acid oxidation along with oleic acid uptake in concentrations of 10-30 ​μM. Moreover, administration of terbutaline for 96 ​h increased glucose uptake (in terbutaline concentrations up to 1 ​μM) and oxidation (1 ​μM), as well as oleic acid oxidation (0.1-30 ​μM), leucine incorporation into cellular protein (1-10 ​μM) and upregulated several pathways related to mitochondrial metabolism (1 ​μM). Data are available via ProteomeXchange with identifier PXD024063.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。