Effect of five novel 5-substituted tetrandrine derivatives on P-glycoprotein-mediated inhibition and transport in Caco-2 cells

五种新型5-取代粉防己碱衍生物对Caco-2细胞中P-糖蛋白介导的抑制和转运的影响

阅读:8
作者:Zhonglian Cao, Dan Li, Li Liu, Ping Yang

Abstract

Tetrandrine (Tet) is a potent inhibitor that reverses P-glycoprotein-mediated multidrug resistance (MDR). A number of novel 5-substituted tetrandrine derivatives were synthesized by the authors. The present study aimed at identifying potential P-gp inhibitor candidates, and intracellular uptake and efflux experiments and Caco-2 cell-based Transwell transport studies were performed. It was demonstrated that all five test compounds were able to inhibit efflux and increase intracellular uptake of the P-gp substrate, rhodamine-123 (Rho-123); the test compounds were P-gp inhibitors. The transepithelial transport experiment indicated that the secretory (basolateral-to-apical) of Rho-123 decreased, the absorption (apical-to-basolateral) increased and the transport efflux ratio (ER) reduced in the presence of the five compounds. Among the compounds, fluobenzene-Tet (TF) exhibited similar inhibitory effect as Tet. Although the other four test compounds exhibited weaker inhibitory effects than Tet and TF, the compounds exhibited stronger inhibitory effects compared with the reference compound verapamil. The study demonstrated that the five novel 5-substituted tetrandrine derivatives are able to act as inhibitors of P-gp to overcome P-gp-mediated drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。