Anatomical differences in nociceptor neurons sensitivity

伤害感受器神经元敏感性的解剖差异

阅读:6
作者:Theo Crosson, Sebastien Talbot

Background

Dorsal Root Ganglia (DRG) neurons are derived from the neural crest and mainly innervate the skin, while Jugular Nodose Complex (JNC) neurons originate from the placode and innervate internal organs. These ganglia are composed of highly heterogeneous groups of neurons aimed at assessing and preserving homeostasis. Among other subtypes, nociceptor neurons are specialized in sensing and responding to environmental dangers. As form typically follows function, we hypothesized that JNC and DRG neurons would be phenotypically and transcriptomically different.

Conclusion

Our data show that JNC and DRG neurons are transcriptomically and functionally unique and that pain sensitivity is different across anatomical sites. Drugs targeting NGF signaling may have limited efficacy to treat visceral pain. Bioelectronics nerve stimulation should also be adjusted to the ganglia being targeted and their different expression profile.

Methods

Mouse JNC and DRG neurons were cultured ex vivo. Using calcium imaging, qPCR and neurite outgrowth assay, we compared the sensitivity of JNC and DRG neurons. Using in-silico analysis of existing RNA sequencing datasets, we confronted our

Results

We found drastically different expression levels of Transient Receptor Potential (TRP) channels, growth factor receptors and neuropeptides in JNC and DRG neurons. Functionally, naïve JNC neurons' TRP channels are more sensitive to thermal cues than the ones from DRG neurons. However, DRG neurons showed increased TRP channel responsiveness, neuropeptide release and neurite outgrowth when exposed to Nerve Growth Factor (NGF). In contrast, JNC neurons preferentially responded to Brain-derived neurotrophic factor (BDNF).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。