Systems genetics of hepatocellular damage in vivo and in vitro: identification of a critical network on chromosome 11 in mouse

体内和体外肝细胞损伤的系统遗传学:小鼠 11 号染色体上关键网络的识别

阅读:6
作者:Roman Liebe, Rabea A Hall, Robert W Williams, Steven Dooley, Frank Lammert

Abstract

Quantitative trait locus (QTL) mapping is a powerful method to find modifier loci that influence disease risk and progression without prior knowledge of underlying genetic mechanisms. The aim of this study is to identify gene loci that contribute to individual differences in liver fibrosis following chronic liver damage. For this purpose, we carried out a mapping study across a panel of 21 BXD recombinant inbred strains using primary hepatocytes challenged with transforming growth factor (TGF)-β for 48 h. We identified a 6 Mb interval on chromosome 11 that is a major modifier of TGF-β-induced hepatocyte injury. Corresponding in vivo genetic analysis of fibrosis after chronic hepatotoxic injury by carbon tetrachloride (CCl4 ip for 6 wk) highlighted the same locus. Expression QTL (eQTL) analysis in liver tissues in the BXD family identified six polymorphisms in this region that are associated with strong cis eQTLs and that correlate well with gene expression in liver after both 6 wk CCl4 treatment and acute ethanol damage of the liver. Within this interval we rank two genes containing coding sequence variants as strong candidates that may modulate the severity of liver fibrosis: 1) the extracellular proteinase inhibitor gene Expi (also known as Wdnm1 or Wfdc18) and 2) musashi RNA-binding protein 2 (Msi2). The powerful combination of experimental, genetics, and bioinformatics methods, as well as combined in vitro and in vivo approaches can be used to define QTLs, genes, and even candidate sequence variants linked to hepatotoxicity and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。