Environmental Microbiota Drives Microbial Succession and Metabolic Profiles during Chinese Liquor Fermentation

环境微生物群驱动中国白酒发酵过程中微生物演替和代谢特征

阅读:9
作者:Xueshan Wang, Hai Du, Yan Zhang, Yan Xu

Abstract

Many microorganisms in the environment participate in the fermentation process of Chinese liquor. However, it is unknown to what extent the environmental microbiota influences fermentation. In this study, high-throughput sequencing combined with multiphasic metabolite target analysis was applied to study the microbial succession and metabolism changes during Chinese liquor fermentation from two environments (old and new workshops). SourceTracker was applied to evaluate the contribution of environmental microbiota to fermentation. Results showed that Daqu contributed 9.10 to 27.39% of bacterial communities and 61.06 to 80.00% of fungal communities to fermentation, whereas environments (outdoor ground, indoor ground, tools, and other unknown environments) contributed 62.61 to 90.90% of bacterial communities and 20.00 to 38.94% of fungal communities to fermentation. In the old workshop, six bacterial genera (Lactobacillus [11.73% average relative abundance], Bacillus [20.78%], Pseudomonas [6.13%], Kroppenstedtia [10.99%], Weissella [16.64%], and Pantoea [3.40%]) and five fungal genera (Pichia [55.10%], Candida [1.47%], Aspergillus [10.66%], Saccharomycopsis [22.11%], and Wickerhamomyces [3.35%]) were abundant at the beginning of fermentation. However, in the new workshop, the change of environmental microbiota decreased the abundances of Bacillus (5.74%), Weissella (6.64%), Pichia (33.91%), Aspergillus (7.08%), and Wickerhamomyces (0.12%), and increased the abundances of Pseudomonas (17.04%), Kroppenstedtia (13.31%), Pantoea (11.41%), Acinetobacter (3.02%), Candida (16.47%), and Kazachstania (1.31%). Meanwhile, in the new workshop, the changes of microbial community resulted in the increase of acetic acid, lactic acid, malic acid, and ethyl acetate, and the decrease of ethyl lactate during fermentation. This study showed that the environmental microbiota was an important source of fermentation microbiota and could drive both microbial succession and metabolic profiles during liquor fermentation.IMPORTANCE Traditional solid-state fermentation of foods and beverages is mainly carried out by complex microbial communities from raw materials, starters, and the processing environments. However, it is still unclear how the environmental microbiota influences the quality of fermented foods and beverages, especially for Chinese liquors. In this study, we utilized high-throughput sequencing, microbial source tracking, and multiphasic metabolite target analysis to analyze the origins of microbiota and the metabolic profiles during liquor fermentation. This study contributes to a deeper understanding of the role of environmental microbiota during fermentation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。