Comparisons of Neurotrophic Effects of Mesenchymal Stem Cells Derived from Different Tissues on Chronic Spinal Cord Injury Rats

不同组织来源间充质干细胞对慢性脊髓损伤大鼠神经营养作用的比较

阅读:7
作者:Takashi Otsuka, Yuyo Maeda, Tomoyuki Kurose, Kei Nakagawa, Takafumi Mitsuhara, Yumi Kawahara, Louis Yuge

Abstract

Cell-based therapies with mesenchymal stem cells (MSCs) are considered as promising strategies for spinal cord injury (SCI). MSCs have unique characteristics due to differences in the derived tissues. However, relatively few studies have focused on differences in the therapeutic effects of MSCs derived from different tissues. In this study, the therapeutic effects of adipose tissue-derived MSCs, bone marrow-derived MSCs, and cranial bone-derived MSCs (cMSCs) on chronic SCI model rats were compared. MSCs were established from the collected adipose tissue, bone marrow, and cranial bone. Neurotrophic factor expression of each MSC type was analyzed by real-time PCR. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 4 weeks after SCI. Hindlimb motor function was evaluated from before injury to 4 weeks after transplantation. Endogenous neurotrophic factor and neural repair factor expression in spinal cord (SC) tissue were examined by real-time PCR and western blot analyses. Although there were no differences in the expression levels of cell surface markers and multipotency, expression of Bdnf, Ngf, and Sort1 (Nt-3) was relatively higher in cMSCs. Transplantation of cMSCs improved motor function of chronic SCI model rats. Although there was no difference in the degree of engraftment of transplanted cells in the injured SC tissue, transplantation of cMSCs enhanced Bdnf, TrkB, and Gap-43 messenger RNA expression and synaptophysin protein expression in injured SC tissue. As compared with MSCs derived other tissues, cMSCs highly express many neurotrophic factors, which improved motor function in chronic SCI model rats by promoting endogenous neurotrophic and neural plasticity factors. These results demonstrate the efficacy of cMSCs in cell-based therapy for chronic SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。