Local Structure in U(IV) and U(V) Environments: The Case of U3O7

U(IV) 和 U(V) 环境中的局部结构:以 U3O7 为例

阅读:4
作者:Gregory Leinders, René Bes, Kristina O Kvashnina, Marc Verwerft

Abstract

A comprehensive analysis of X-ray absorption data obtained at the U L3-edge for a systematic series of single-valence (UO2, KUO3, UO3) and mixed-valence uranium compounds (U4O9, U3O7, U3O8) is reported. High-energy resolution fluorescence detection (HERFD) X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) methods were applied to evaluate U(IV) and U(V) environments, and in particular, to investigate the U3O7 local structure. We find that the valence state distribution in mixed-valence uranium compounds cannot be confidently quantified from a principal component analysis of the U L3-edge XANES data. The spectral line broadening, even when applying the HERFD-XANES method, is sensibly higher (∼3.9 eV) than the observed chemical shifts (∼2.4 eV). Additionally, the white line shape and position are affected not only by the chemical state, but also by crystal field effects, which appear well-resolved in KUO3. The EXAFS of a phase-pure U3O7 sample was assessed based on an average representation of the expanded U60O140 structure. Interatomic U-O distances are found mainly to occur at 2.18 (2), 2.33 (1), and 3.33 (5) Å, and can be seen to correspond to the spatial arrangement of cuboctahedral oxygen clusters. The interatomic distances derived from the EXAFS investigation support a mixed U(IV)-U(V) valence character in U3O7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。