A potential diagnostic marker for ovarian cancer: Involvement of the histone acetyltransferase, human males absent on the first

卵巢癌的潜在诊断标记:组蛋白乙酰转移酶的参与,人类男性在第一

阅读:6
作者:Ning Liu, Rui Zhang, Xiaoming Zhao, Jiaming Su, Xiaolei Bian, Jinsong Ni, Ying Yue, Yong Cai, Jingji Jin

Abstract

Human males absent on the first (hMOF), a human ortholog of the Drosophila MOF protein, is responsible for histone H4 lysine 16 (H4K16) acetylation in human cells. The depletion of hMOF leads to a global reduction in histone H4K16 acetylation in human cells, genomic instability, cell cycle defects, reduced transcription of certain genes, defective DNA damage repair and early embryonic lethality. Studies have shown that abnormal hMOF gene expression is involved in a number of primary cancers. The present study examined the involvement of hMOF expression and histone H4K16 acetylation in clinically diagnosed primary ovarian cancer tissues. Clinically diagnosed frozen primary ovarian cancer tissues were used for polymerase chain reaction (PCR), quantitative PCR (qPCR), western blotting and immunohistochemical staining approaches. A PCR analysis of mRNA expression in 47 samples revealed a downregulation of hMOF mRNA in 81% of patients, whereas only 13% of patients demonstrated upregulation. qPCR was used to validate the frequent downregulation of hMOF expression in the primary ovarian cancer tissues. As expected, the analysis of hMOF expression in 57 samples revealed that hMOF mRNA expression was significantly downregulated (>2-fold decrease) in 65% of patients, while a <2-fold reduction of hMOF was observed in 10.5% of patients. Furthermore, the expression of hMOF-regulated human leukocyte antigen (HLA) complex 5, (HCP5), was also found to be downregulated in >87% of patients with a decrease in hMOF. hMOF and its regulated gene, HCP5, are frequently downregulated in human ovarian cancer, suggesting that hMOF may be involved in the pathogenesis of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。