Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration

FGF2 在成骨细胞和内皮细胞微环境细胞中对 CXCL5 的差异调节支持造血干细胞迁移

阅读:6
作者:Kyung-Ae Yoon, Hye-Sim Cho, Hong-In Shin, Je-Yoel Cho

Abstract

Stem cell maintenance requires a specific microenvironment. Hematopoietic stem cells (HSCs) are mainly maintained by the endosteal osteoblast (OB) niche, which provides a quiescent HSC microenvironment, and the vascular niche, which regulates the proliferation, differentiation, and mobilization of HSCs. The systemic administration of FGF2 failed to induce normal hematopoiesis in bone marrow (BM) by reducing SDF-1, an important factor for hematopoiesis. Interestingly, SDF-1 levels were decreased in the OBs, but increased in vascular endothelial C166 cells when FGF2 was administered. We hypothesized that FGF2 induces changes in HSC migration from BM; therefore, we investigated FGF2-induced factors of HSC migration by a microarray chip. We searched the genes that were decreased in primary OBs, but increased in C166 cells upon FGF2 treatment. We confirmed selected genes that function in the extracellular region and identified the CXCR2-related chemokine candidate LIX/Cxcl5. A chemotaxis assay showed that CXCL5 induced the migration of HSCs (CD34(-/low)LSK). Our data suggest that the differential regulation of the chemokine CXCL5 between OBs and endothelial cells upon FGF2 treatment is involved in HSC mobilization from the OB niche or BM to peripheral blood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。