Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory-related brain areas

急性雌激素治疗促进识别记忆巩固并改变与记忆相关的大脑区域的单胺水平

阅读:7
作者:T Inagaki, C Gautreaux, V Luine

Abstract

Acute effects of estrogens on mnemonic processes were examined at the behavioral and neurochemical levels. 17beta-estradiol and 17alpha-estradiol influences on memory consolidation were assessed using object placement (OP) and object recognition (OR) tasks. Subjects received treatment immediately after a sample trial (exploring two novel objects), and memory of objects (OR memory) or location of objects (OP memory) was tested 4h later. Both isomers of estradiol enhanced memory. For spatial memory, 15 and 20 microg/kg of 17beta-estradiol facilitated OP, while lower and higher doses were ineffective. 17alpha-estradiol had a similar pattern, but a lower dose was effective. When treatment was delayed until 45 min after a sample trial, memory was not enhanced. For non-spatial memory, OR was facilitated at 5 microg/kg of 17beta-estradiol and at 1 and 2 microg/kg of 17alpha-estradiol and, similar to OP, lower and higher doses were ineffective. These data demonstrate that beneficial effects of estrogens are dose, time and task dependent, and the dose-response pattern is an inverted U. Because monoamines are known to have contributions to memory, brains were removed 30 min after treatment for measurements of dopamine (DA), norepinephrine (NE), serotonin (5-HT), and metabolites. Estrogen elevated 5HT, NE metabolite MHPG, turnover ratio of NE to MHPG, and DA metabolite DOPAC levels in the prefrontal cortex, while NE and MHPG were decreased in the hippocampus. Thus, acute estrogens exert rapid effects on memory consolidation and neural function, which suggests that its mnemonic effects may involve activation of membrane associated estrogen receptors and subsequent signaling cascades, and that monoamines may contribute to this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。