CircPTPN11 inhibits the replication of Coxsackievirus B5 through regulating the IFN-I pathway by targeting miR-152-3p/SIRPA axis

CircPTPN11通过靶向miR-152-3p/SIRPA轴调控IFN-I通路抑制柯萨奇病毒B5的复制

阅读:7
作者:Jingru Gao, Fan Yang, Jihong Zhang, Heng Yang, Wei Chen

Abstract

Coxsackievirus B5 (CVB5) is a major pathogen responsible for hand-foot-mouth disease, herpangina, and even severe death. The mechanisms underlying CVB5-induced diseases are not fully elucidated, and no specific antiviral treatments are currently available. Circular RNAs (circRNAs), a closed-loop molecular structure, have been reported to be involved in virus infectious diseases. However, their roles and mechanisms in CVB5 infection remain largely unknown. In this study, we identify that CircPTPN11 is significantly upregulated following CVB5 infection in RD cells. Characteristic analysis reveals that the expression of CircPTPN11 is both time- and dose-dependent upon CVB5 infection and is specific to intestinal tissue. Moreover, CircPTPN11 inhibits CVB5 replication by activating IRF3 in the type-I interferon (IFN-I) pathway. Further underneath mechanism shows that CircPTPN11 indirectly regulates CVB5 replication by sponging miR-152-3p, and miR-152-3p influences CVB5 replication by interacting with the gene coding for signal regulatory protein alpha (SIRPA). In conclusion, this study suggests that CircPTPN11 targets SIRPA by sponging miR-152-3p, thereby inhibiting the replication and proliferation of CVB5. These findings provide a molecular target for the diagnosis and treatment of CVB5 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。