Severe Uncontrolled Maternal Hyperglycemia Induces Microsomia and Neurodevelopment Delay Accompanied by Apoptosis, Cellular Survival, and Neuroinflammatory Deregulation in Rat Offspring Hippocampus

严重不受控制的母体高血糖会诱发大鼠后代海马的身材矮小症和神经发育迟缓,并伴有细胞凋亡、细胞存活和神经炎症失调

阅读:5
作者:Francele Valente Piazza, Ethiane Segabinazi, André Luís Ferreira de Meireles, Filipe Mega, Christiano de Figueiredo Spindler, Otávio Américo Augustin, Gabriela Dos Santos Salvalaggio, Matilde Achaval, Maria Sol Kruse, Héctor Coirini, Simone Marcuzzo

Abstract

Maternal diabetes constitutes an unfavorable intrauterine environment for offspring development. Although it is known that diabetes can cause brain alterations and increased risk for neurologic disorders, the relationship between neuroimmune activation, brain changes, and neurodevelopment deficits in the offspring remains unclear. In order to elucidate the short- and long-term biological basis of the developmental outcomes caused by the severe uncontrolled maternal hyperglycemia, we studied apoptosis, neurogenesis, and neuroinflammation pathways in the hippocampus of neonates and young rats born to diabetic dams. Diabetes was induced on gestational day 5 by an injection of streptozotocin. Evaluations of milestones, body growth, and inhibitory avoidance were performed to monitor the offspring development and behavior. Hippocampal modifications were studied through cellular survival by BrdU in the dentate gyrus, expression of apoptosis-regulatory proteins (procaspase 3, caspase 3, and Bcl-2), BDNF, and neuroinflammatory modulation by interleukins, MHC-I, MHC-II, Iba-1, and GFAP proteins. Severe maternal diabetes caused microsomia and neurodevelopmental delay in pups and decrease of Bcl-2, procaspase 3, and caspase 3 in the hippocampus. Moreover, in a later stage of development, it was found an increase of TNF-α and a decrease of procaspase 3, caspase 3, MHC-I, IL-1β, and BDNF in the hippocampus, as well as impairment in cellular survival in the dentate gyrus. This study showed significant short- and long-term commitments on the development, apoptosis, cell survival, and neuroinflammation in the offspring hippocampus induced by severe uncontrolled maternal hyperglycemia. The data reinforce the need for treatment of maternal hyperglycemic states during pregnancy and breast-feeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。