Polyethylene-Water and Polydimethylsiloxane-Water Partition Coefficients for Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls: Influence of Polymer Source and Proposed Best Available Values

多环芳烃和多氯联苯的聚乙烯-水和聚二甲基硅氧烷-水分配系数:聚合物来源的影响和建议的最佳可用值

阅读:6
作者:Michiel T O Jonker

Abstract

For most passive sampling applications, the availability of accurate passive sampler-water partition coefficients (Kp-w ) is of key importance. Unfortunately, a huge variability exists in literature Kp-w values, in particular for hydrophobic chemicals such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). This variability is a major source of concern in the passive sampling community, which would benefit from high-quality Kp-w data. Hence, in the present study "best available" PAH and PCB Kp-w values are proposed for the two most often applied passive sampling materials, that is, low-density polyethylene and polydimethylsiloxane (PDMS), based on (1) a critical assessment of existing literature data, and (2) new Kp-w determinations for polyethylene and PDMS, with both polymers coming in six different versions (suppliers, thicknesses). The experimental results indicated that Kp-w values for PDMS are independent of the source, thus allowing straightforward standardization. In contrast, Kp-w values for polyethylene from different sources differed by up to 30%. Defining best available Kp-w values for this polymer therefore may require standardization of the polymer source. Application of the proposed best available Kp-w values will substantially improve the accuracy of freely dissolved concentration results by users and the potential for comparisons across laboratories. Environ Toxicol Chem 2022;41:1370-1380. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。