Anti-microRNA-21/221 and microRNA-199a transfected by ultrasound microbubbles induces the apoptosis of human hepatoma HepG2 cells

超声微泡转染抗microRNA-21/221及microRNA-199a诱导人肝癌HepG2细胞凋亡

阅读:5
作者:Xinmin Guo, Shunhua Guo, Liwen Pan, Li Ruan, Yingshi Gu, Jichuang Lai

Abstract

Gene therapy, particularly microRNA (miRNA), is a promising candidate in the treatment of cancer; however, it is challenging to develop gene delivery systems. Ultrasound microbubbles have been used for gene delivery with excellent results. The present study aimed to investigate the transfection efficiency of HepG2 cells using ultrasound microbubbles. The effects of three miRNAs (miR-21, miR-221 and miR-199a) on HepG2 cells were also determined by performing ultrasound microbubble-mediated gene transfection. Three recombinant plasmids containing anti-miR-21, anti-miR-221 and miR-199a were fused with enhanced green fluorescent protein. For the transfection of genes, the type of contrast agent, the concentration of microbubble contrast agent and the exposure intensity of ultrasound were optimized. The expression of miRNAs was detected using reverse transcription-polymerase chain reaction. To determine the effect of anti-miR-21, anti-miR-221 and miR-199a on HepG2 cells, MTT, cell cycle analysis and Annexin V-PE/7-ADD apoptosis assays were performed. The optimal condition was 10% sulfur hexafluoride microbubbles at an ultrasound frequency of 2.0 MHz and mechanical index of 0.28. When cells were transfected with three recombinant plasmids using ultrasound microbubbles, there was significant downregulation of miR-21 and miR-221 and upregulation of miR-199a (P<0.05). All three treatments inhibited cell proliferation and promoted the apoptosis of cells. The present data indicated that the delivery of anti-miR-21, anti-miR-221 and miR-199a may be mediated by ultrasound microbubble contrast agents. With this approach, cell proliferation may be effectively inhibited and cell apoptosis may be induced. These are novel cancer therapy targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。