Conclusions
An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.
Methods
Male rats were exposed to CIH. Orofacial mechanical allodynia was assessed using the eyeblink test and the two-bottle preference drinking test. The CGRP-immunoreactive neurons in the trigeminal ganglion (TG), CGRP-positive primary afferents projecting to laminae I-II of the trigeminal spinal subnucleus caudalis (Vc), and neural responses in the second-order neurons of the Vc were determined by immunohistochemistry. CGRP receptor antagonist was administrated in the TG.
Results
CIH-induced ocular and intraoral mechanical allodynia. CGRP-immunoreactive neurons and activated satellite glial cells (SGCs) were significantly increased in the TG and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly higher in CIH rats compared to normoxic rats. Local administration of the CGRP receptor antagonist in the TG of CIH rats attenuated orofacial mechanical allodynia; the number of CGRP-immunoreactive neurons and activated SGCs in the TG, and the density of CGRP-positive primary afferent terminals and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly lower compared to vehicle-administrated CIH rats. Conclusions: An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.
