Preselective gene therapy for Fabry disease

法布里病的预选择性基因治疗

阅读:8
作者:G Qin, T Takenaka, K Telsch, L Kelley, T Howard, T Levade, R Deans, B H Howard, H L Malech, R O Brady, J A Medin

Abstract

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme alpha-galactosidase A (alpha-gal A; EC ). We previously have demonstrated long-term alpha-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic alpha-gal A gene and the human IL-2Ralpha chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted alpha-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34(+) peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased alpha-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。