A Milk Extracellular Vesicle-Based Nanoplatform Enhances Combination Therapy Against Multidrug-Resistant Bacterial Infections

基于牛奶细胞外囊泡的纳米平台增强了针对多种耐药细菌感染的联合治疗

阅读:8
作者:Shaoqi Qu, Shuo Yang, Qingjun Xu, Mengying Zhang, Feng Gao, Yongning Wu, Lin Li

Abstract

The increasing occurrence of infections caused by multidrug-resistant (MDR) bacteria drives the need for new antibacterial drugs. Due to the current lack of antibiotic discovery and development, new strategies to fight MDR bacteria are urgently needed. Efforts to develop new antibiotic adjuvants to increase the effectiveness of existing antibiotics and design delivery systems are essential to address this issue. Here, a bioinspired delivery system equipped with combination therapy and paracellular transport is shown to enhance the efficacy against bacterial infections by improving oral delivery. A screening platform is established using an in vitro-induced high polymyxin-resistant strain to acquire plumbagin, which enhances the efficacy of polymyxin. Functionalized milk extracellular vesicles (FMEVs) coloaded with polymyxin and plumbagin cleared 99% of the bacteria within 4 h. Mechanistic studies revealed that the drug combination damaged the membrane, disrupted energy metabolism, and accelerated bacterial death. Finally, FMEVs are efficiently transported transcellularly through the citric acid-mediated reversible opening of the tight junctions and showed high efficacy against an MDR Escherichia coli-associated peritonitis-sepsis model in mice. These findings provide a potential therapeutic strategy to improve the efficacy of combination therapy by enhancing oral delivery using a biomimetic delivery platform.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。